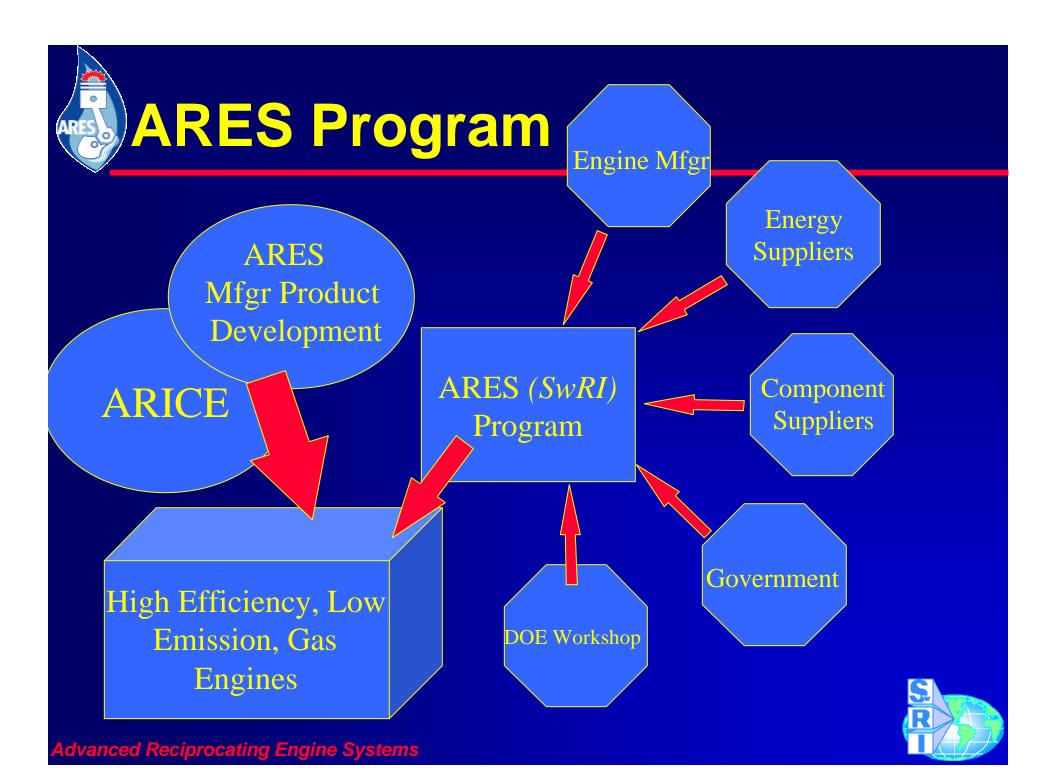
Advanced Reciprocating Engine Technology for Power Generation in California

(Review of ARES Consortia @ SwRI)


Southwest Research Institute
July 2001

What is ARES?

- Generic Acronym
 - Advanced Reciprocating Engine **Systems**
- Cooperative Research Program (CRP) organized by SwRI - "precompetitive technology" focused on Stationary **Natural Gas Engines for Power** Generation
- Continues to be an acronym for Joint **Industry DOE programs for** development

Program Members

- Department of Energy
- Gas Research Institute
- Caterpillar
- Cooper Energy Services
- Cummins
- Waukesha Engine Division
- Southern California Gas Company
- Altronic
- Champion
- Woodward

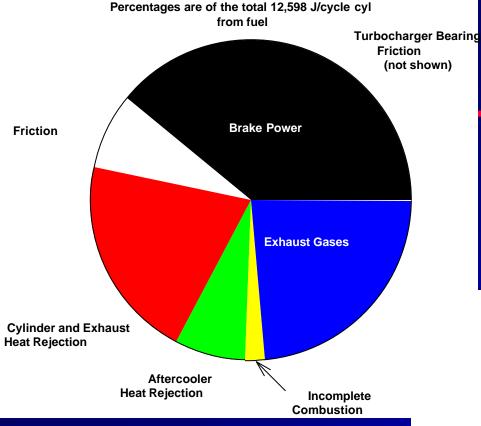
ARES (SwRI) - Objectives

- Identify and develop key technology in a precompetitive program for high efficiency, low emission, natural gas, reciprocating engines.
- Support development of competitive products with manufacturers.
- 50% Efficiency
- \square 5 ppm NO_x AT 15% O₂ (\sim 0.05 g/bhp-hr)
- THC Maintain Current Level
- HAPs Maintain Current Level
- Technology
 - Must Reduce Cost of Electricity
 - Must Not Impact CHP Applications
 - Maintain Durability and Reliability

Barriers to High Efficiency

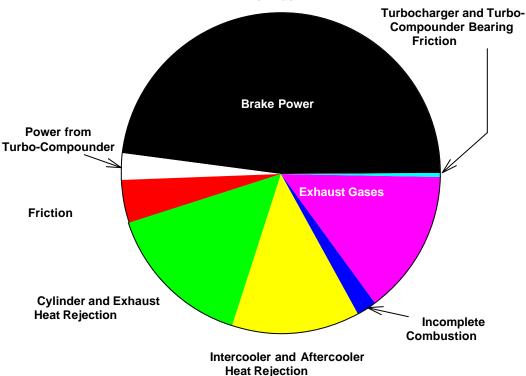
- Knock
- In-cylinder heat loss
- Burn rate
- Combustion inefficiency
- Frictional losses
- Pumping losses
- Heat loss in exhaust port and manifold
- Inefficient exhaust energy recovery
- Mechanical strength/design
- NO_x Emissions

Program Direction


- High Efficiency Will Require High BMEP
- Knock Limitations Must be Overcome to Achieve High BMEP
- Reduction in Energy Losses will Increase Efficiency
- Dilute Air-Fuel Mixtures Required for Low NO_x
- Favorable Ignition and Combustion Dilute Mixtures a Necessity
- Aftertreatment Required

Funded Tasks

- Technical Path Evaluation
- Knock Modeling
- High BMEP Engine Development
- Exhaust Aftertreatment
- Ignition System Development
- Direct Water Injection
- Micro-pilot Ignition
- Stoichiometric/EGR
- Not funded: HCCI, HPDI, Sparkplug life, laser ignition, Syngas


Baseline Engine Energy Balance

Advanced Reciprocating Engine Systems

Technical Path Evaluation

ARES 50 Percent BTE Engine Energy Balance

Percentages are of the total 20,351 J/cycle cyl from fuel

Summary Approximate 50% BTE Engine

	Description
Miller Cycle	X.X Expansion Factor
Turbo-Compounding	XX% turbine efficiency XX% gear train efficiency
Low Heat Rejection Exhaust System	XX% heat loss reduction
Low Friction/High BMEP	AA% to BB% mechanical efficiency
Burn Rate	CC degree to DD degree 10 to 90% burn duration
Flow Improvement	EE% Improvement
Two-Stage Compression w/	FF% compressor efficiency per stage,

High BMEP Engine Development

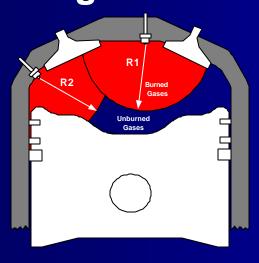
Objective

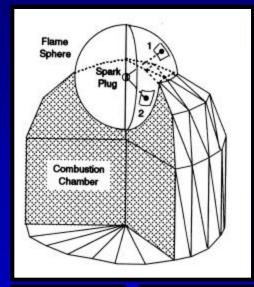
- Conduct Engine Testing of Methods for Increasing BMEP to Improve Efficiency
- Verify Modeling Results From Technical Path Evaluation & Knock Mitigation Strategy Evaluation
- Identify Enabling Technology for High BMEP Operation

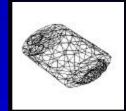
Approach

 Use Single Cylinder Engine as Test Bed for Alternative Cycles, Ignition Systems, Direct Water Injection, EGR, Combustion Chamber Design for Knock Tolerance

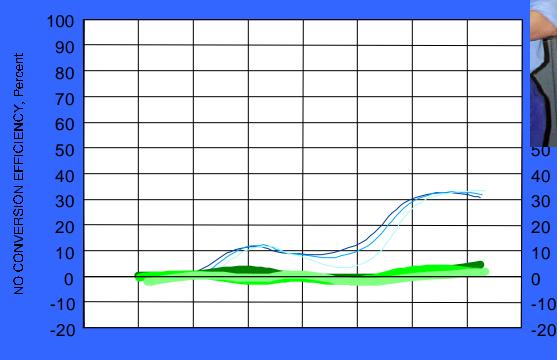
Variables Impacting Engine Performance


	Ron	MES	Blue	Equivalen	Expansion	Expantion 2	Peak Cyli.	50% Burn	CASSO SHION	Bum Duran	Exhaust p.	Temperan	Sourie (Tight)	Combusii, (1/20)	R-Square
h _{mech}	Û	①					Û								0.8646
h _{pump}	Û				Û										0.9622
h _{cycle}				Û		仓		Û	Û	Û					0.9003
h _{comb}						Û	仓				仓				0.8437
NO _x			①	仓	Û	仓		Û							0.9222
B1090				Û								Û		Û	0.8487
PCP		①		Û		仓		Û							0.9836
Exhaust Port Temperature (T _{ex.port})	仓			Û		Û		Û							0.9479




Knock Modeling

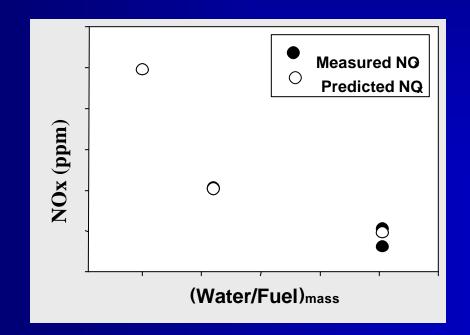
Correlated with
Experimental Data
Chamber shape and
ignition effects



Exhaust Aftertreatment Lean NO_x Catalysts

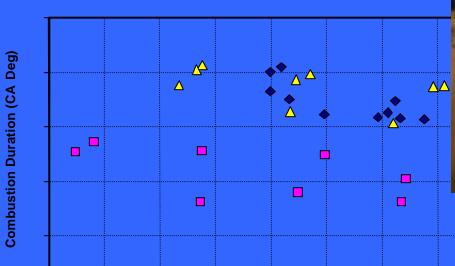
- Promising formulations from Literature review proved non-effective
- SCR Demo showed NO_x eff. > 90%
- Non-Thermal Plasma extends low temperature operation of SCR

CATALYST INLET TEMPERATURE, °C


■NO (570HC) ■NO (1000HC) ■NO (2000HC)
■CO (570HC) —CO (1000HC) —CO (2000HC)

Direct In-Cylinder Water Injection

- Microfine Spray of water simultaneously:
 - —Improves Knock Tolerance
 - —Reduces NO_x Emissions
 - Allows Increased BMEP for Increased Efficiency
- Use of water increasingly common in large diesel engines



Ignition System Development

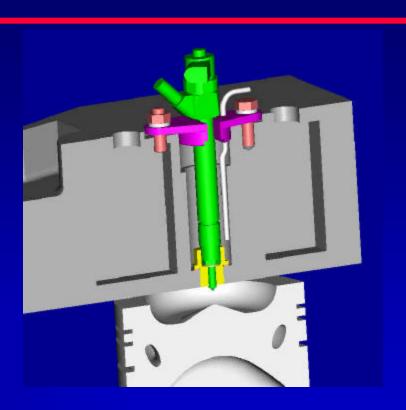
Multiple Spark Ignition provides desired BMEP improvement and combustion duration

PHI

♦ Standard SI ■ Multi-Spark △ MS-Central Only

Micro-Pilot Ignition

Objective


 Develop an Understanding of Tradeoffs for Micro-pilot Ignition Relative to Other Ignition Systems

Approach

- Literature Review
- Engineering Analysis of Injection System Requirements for Large Bore Engines
- Extensive engine testing with HPCR and full authority control

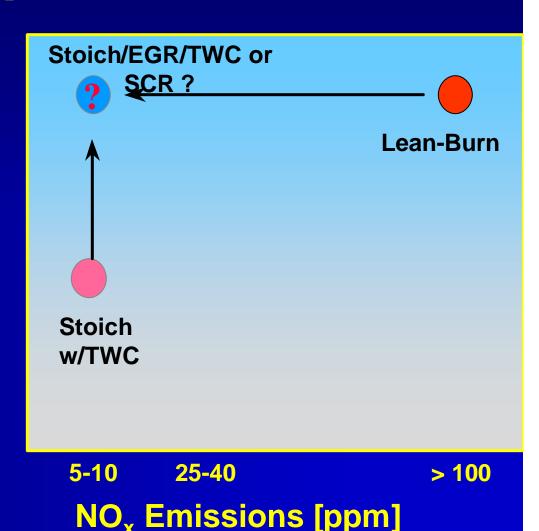
Summary

 Pilot Ignition Can Provide Improved Performance and Lower NO_x Emissions

Stoichiometric Engine w/EGR

- Exhaust Temperature = Lean-Burn
- Use Lean-Burn Comp. Ratio & Boost
- Increased BMEP over Stoichiometric
- Engine-Out NOx Reduced
- Allows Variability in A/F Ratio Control
- Three-Way Catalyst Used for <15 ppm NOx</p>
- Much Cheaper than SCR on Lean-Burn
- Low CO and Air Toxics
- Micro-Pilot, Syngas extend EGR tolerand

ARES...ARICE

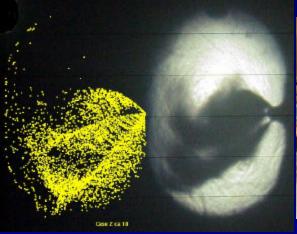


Clean Power Generation Products that Enhance the Public Good and Make Economic Sense

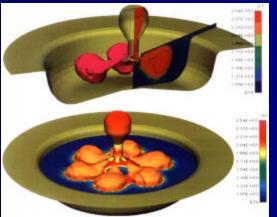
NO_x Reduction Technology Comparison

Efficiency

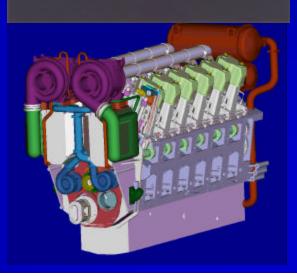
- ARICE include focus on marriage of engine and aftertreatment technology
 - Durability
 - Efficiency
 - Cost
- Stoich/EGR/TWC possible short term solution



ARICE Technologies??


- Departure from present technology.

 Non-traditional approaches? (HCCI/Fuel Treatment/Combustion Chamber Design)
- Advanced controls absolute necessity
- BMEP increase required
- Turbomachinery improvements needed
- Aftertreatment required



Contact Information
James Cole
210-522-5473
jcole@swri.org

